

Thermal Resistance

CEPLA's thermal decomposition is extremely high. It is stable in heat up to 300°C for a long time and if it was for a short period of time, the temperature can be raised up to 480°C. CEPLA can be used continuously with a wide temperature ranges as it doesn't have melting point and doesn't soften.

Radiation Resistance

CEPLA has the best radiation resistance amongst other thigh performance plastics. It is especially resistant to degradation by gamana-ray radiation.

Electrical Properties

CEPLA has stable dielectric constant at a high frequency and low in dessipation factor.

Chemical Properties

CEPLA is acid-resistant and alkali resistant and it doesn't degrade its mechanical strength by chemicals. It also has and exceptionally low water absorption factor and so offers dimensional stability with no dimensional change.

Mechanical Strength

CEPLA is superb in its tensile strength, flexural modulus and creep-resistance in comparison to other high performance plastics.


Mechanical Processing

CEPLA is extremely suited for cutting and it makes it possible to cut any complicated form precisely.

Wearing Resistance

CEPLA has good wearing resistance even without any lubrication and has stable frictional properties under high PV value.

Aromatic Polyimide **CEPLa** is

CEPLA: Super-Heat-Resistant Polyimide plastic

CEPLA is a shape of aromatic polyimde resin, produced though condensation polymerization, biphenyltetracarboxylic dianbydride(BPDA) and diamine. CEPLA is excellent for wide range of use for its heat resistance, mechanical properties, mechanical processing, radiation resistance, chemical resistance and water absorption resistance.

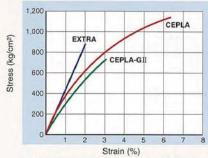
APPLICATIONS

- 1. Heat resistant machinery parts
- 2. Frictional parts in high temperature
- 3. Electrical, electronic and office equipment parts
- 4. Nuclear related parts
- 5. Aircraft, aerospace related equipment parts

GENERAL PROPERTIES

Mechanical Properties

Table-1 Mechanical Properties


		Typical Value						
Property	Unit	CEP	LA	EXT	RA	CEPL	A-G II	Test Method
Property	Unit	°C		°C		°C		ASTM
		23	260	23	300	23	260	
Tensile Strength	Мра	116	41	82	24	73	30	D-638
Tensile Elongation	%	5.0	6.0	2.0	1.5	3.0	2.6	D-638
Flexural Strength	Мра	161	59	101	41	80	36	D-790
Flexural Modulus	Gpa	4.2	2.1	8.0	3.7	4.9	2.6	D-790
Compressive Stress (1% Deformation)	Мра	26	-	40	-	24	-	D-695
Compressive Modulus	Gpa	2.6	-	4.0	-	2.3	-	D-695
Izot Impact (Notched, unnotched)	J/min	77.5 956.5	_	22.4 113.2	_	21.4 162.1	-	D-265
Rockwell Hardness	M scale	114	_	113	_	94	-	D-785
Compressive Creep	% 150°C	0.8	33	0.6	36	1.1	16	Stress 17.2Mpa 100Hrs

CEPLA's mechanical properties are outstandingly superior compared to other high performance plastics. it has exceptionally high mechanical strength, flexural modulus and creep resistance are exceptionnally good in comparison with other high performance plastics.

(1) Stress vs. Strain Curve

Stress vs. Strain curves for CEPLA, EXTRA and CEPLA-GII are shown in Fig-1 and Fig-2.

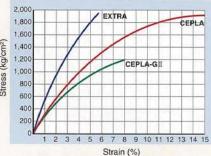


Fig-1 Tensile Stress vs. Strain Curve

Fig-2 Compressive Stress vs. Strain Curve

(2) Tensile Strength -

Tensile strength at high temperature are shown in Fig-3.

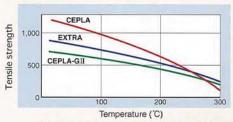
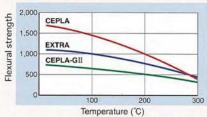



Fig-3 Tensile Strength vs.Temperature

(3) Flexural Properties =

Flexural properties at high temperature are shown in Fig-4 and Fig-5.

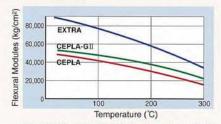


Fig-4 Flexural Strength vs.Temperature

Fig-5 Flexural Modules vs.Temperature

DENERAL PROPERTIES

Thermal Properties

CEPLA's high-temperature properties are excellent and can be used continuously in a wide range of temperature. Especially EXTRA's heat distortion temperature of 500°C is far superior to other high performance plastics

Table-2 Thermal Properties

		Temperature	Ty	pical Val	ue	Test
Property	Unit	(°C)	CEPLA	EXTRA	CEPLA- GII	Method ASTM
		20~100	36.2	25.0	-	
0 111		100~200	63.5	38.0	7.0	
Coefficiency of Linean		200~300	82.5	66.0	-	
Thermal	PPM/°C	300~400		101.0	-	E-233
Expansion		20~250 20~300 20~100	55.2 — —	36.9 - 59.2	63.0 —	
Thermal Conductivity	W/m·°C	25	0.395	0.453	1.256	_
Specific heat	J/g·°C	25	1.05	1.05	0.97	ing in the second
Thermal Decomposition Temperature	°C	n e	548	592	553	10% Reduced
Thermal Weight Reduction	%	-	0.20 1.70	0.15 0.88	0.50	300°C×18 ^H 400°C×18 ^H
Heat Distortion Temperature	°C	_	360	500	370	D-648 (1.82Mpa)

Thermal Decomposition -

Thermal decomposition and isothermal deterioration of plastic suggest heat resistance for short term. Fig-6 shows thermal decomposition and Fig-7 shows isothermal deterioration.

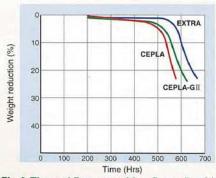


Fig-6 Thermal Decomposition Curve (in air)
(Weight reduction at an increasing temperature rate of 3 °C/min)

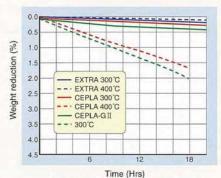


Fig-7 Isothermal Deterioration

Electrical Properties

CEPLA displays outstanding electrical properties over a wide temperature and frequency range.

Table-3 Electrical Properties

Property	11-11	Temperature (°C)	Typica	Test Method	
	Unit		CEPLA	EXTRA	ASTM
Dielectric Strength (2mm Thick)	KV/mm	23	18.0	19.0	D-149
Dielectric Constant (1KHz)	_	23	3.59	3.58	D-150
Dissipation Factor (1KHz)		23	0.0012	0.0015	D-150
Volume Resistivity	Ω-cm	23	1.8×10 ¹⁶	1.9×10 ¹⁶	D-257
Surface Resistivity	Ω	23	9.4×10 ¹⁶	7.9×10 ¹⁶	D-257
Arc Resistance	Sec	23	124	122	D-495

Dielectric Constant

Dielectric constant of CEPLA is constant at increased frequency Fig-8 shows delectricconstant vs. frequency

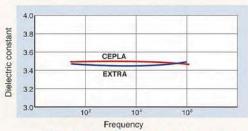


Fig-8 Delectricconstant vs. Frequency

Dissipation Factor -

Dissipation factor shows heat loss for alternative currency, and this is very important for high frequency.

Lower the dissipation factor, smaller the heat loss **Fig-9** shows dissipation factor vs. frequency.

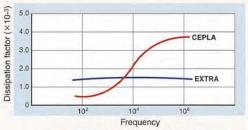


Fig-9 Dissipation Factor vs. Frequency

ENVIRONMENTAL PROPERTIES

(1) Resistance to Thermal Degradation

Without standing high heat distortion temperature, CEPLA can be used in high temperature environment. In such case, evaluation of resistance to thermal degradation is necessary to forecast

projected lifetimes of parts. Fig-10 shows relationship between time and temperature when the retention of flexural strength is 50%. Thermal degradation of CEPLA is shown in Fig-11 and Fig-12. These data indicate excellency of EXTRA.

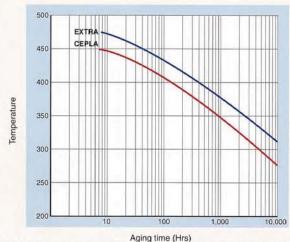


Fig-10 Temperature to 50% Reduction in Flexural Strength

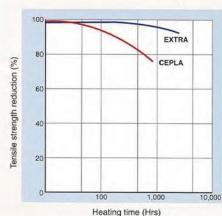


Fig-11 Thermal Degradation in Tensile Strength (300°C)

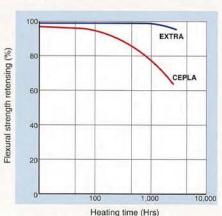


Fig-12 Thermal Degradation in Flexural Strength (300°C)

(2) Weather Ability

CEPLA is stable when exposed to sunshine or ultraviolet light. **Fig-13** shows weather ability of CEPLA.

Test Conditions

OUVCON

Sunshine Weathermeter

Temp:63±3°C

Spray: 12min/1Cycle (60min)

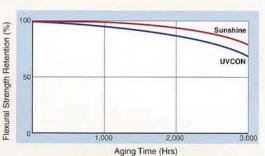


Fig-13 Weatherability of CEPLA

(3) Chemical Resistance

CEPLA is chemically stable and resistant to all organic solvent. In comparison with other polyimide resins, CEPLA is more resistant to acid or alkali.

Table-4 Chemical Resistance

Chemical	Test	Evalu	uation	Tensile Strength Retention	
Olicilical	Condition	CEPLA	EXTRA	CEPLA	EXTRA
Gasoline	Room Temp 2000hrs Dipping	No change	No change	100	100
Light Oil	Room Temp 2000hrs Dipping	No change	No change	100	100
Toluene	Room Temp 2000hrs Dipping	No change	No change	100	100
Methyl Ethyl Ketone	Room Temp 2000hrs Dipping	No change	No change	100	100
Trichlene	Room Temp 2000hrs Dipping	No change	No change	100	100
Isopropanal	Room Temp 2000hrs Dipping	No change	No change	100	100
35% Hydrochkoric Acid	Room Temp 120hrs Dipping	No change	No change	99	99
97% Sulphuris Acid	Room Temp 120hrs Dipping	Swelling	Swelling	-	-
60% Nitric Acid	Room Temp 120hrs Dipping	No change	No change	98	98
10% Sodium Hydroxide	Room Temp 120hrs Dipping	No change	No change	95	95
85% Phosphoric Acid	Room Temp 120hrs Dipping	No change	No change	99	99
15% Acetic Acid	Room Temp 120hrs Dipping	No change	No change	100	100

ENAIRONIMENLYT

(4) Water Absorption

Polyimide resin absorb water, but in comparison with other polyimide resins, CEPLA has a relatively low water absorption factor.

Table-5 Water Absorption

Property	110010	Typica	Test Method	
	Unit	CEPLA	EXTRA	ASTM
Water Absorption (48hrs)	%	0.46	1.12	D570
Equilibrium Water Absorption	%	1.3	0.4	D570

(5) Radiation Resistance

As shown in Fig-14, CEPLA shows no degradation on its mechanical strength until 1×10⁹ rad and superior properties compared to other organic plastics.

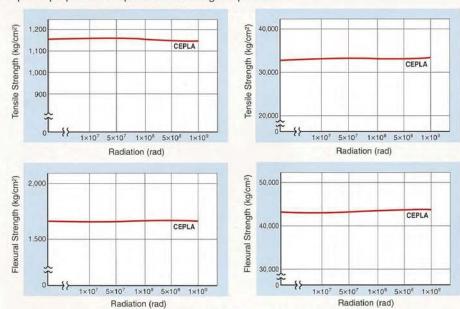


Fig-14 Radiation Resistance of CEPLA: Co-60γ Rays: 1×106 rad/hour

FRICTION/AL PROPERTIES

CEPLA has excellent frictional properties thanks to its high limiting PV value.

Table-6 Frictional Properties

Property	Unit		Typical Valu	ie	Test Method	
	Unit	CEPLA	EXTRA	CEPLA-GII	rest wethou	
Tabar Abrasion Lose (CS-17.1000g)	Mg/1000 Times	14.7	-	-	ASTM D-1044	
Limiting PV Value	Mpa·m/s	1.71	2.21	2.94	S45C 0.5m/sec	
Kinetic Friction Factor		0.25	0.31	0.30	S45C 0.5m/sec	
Abrasion Lose	mg	3.8	1.2	2.5	1.5.1kgf	

Friction Factor

Fig-15 shows relationship of limiting PV vs Kinetic friction factor.

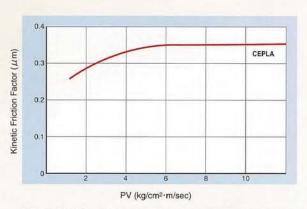


Fig-15 Limiting PV vs. Kinetic Friction Factor of CEPLA

CEPLA STANDARD SIZE

	Diameter (mm)	Thic	kness	(mm)
	<i>ϕ</i> 200			
Circular Board	φ 150		0.5	
	<i>ϕ</i> 100	50	25	10
	φ 7 5			

×	Ava	lable	up	to	$\phi 350$
---	-----	-------	----	----	------------

	Length×Width (mm)	Thick	kness	(mm)
Square	100×100			
Board	150×150	50	25	10
	200×200			

	Diameter (mm)	Len	gth
	φ 50		
	φ 40		
	φ 30		
Rod	φ 25	200	100
	φ 20	200	100
	φ 15		
	φ 10		
	φ5		

CEPLA products are excellent parts for processing machines because of its super thermal resistance, radiation resistance, mechanical properties, wearing resistance, dialectic strength and easy processing.

Magninery Paris of CEPLA

Machinery Parts of CEPLA

(Precise to a micron unit!)

What's so excellent about CEPLA is its outstanding precision in processing. CEPLA has the strength of ceramics, yet can cut like a metal. CEPLA products a custom made to a precies form and size by request. CEPLA is a new generation of material and its excellent properties enable a greater range of applications.